PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Nieme: Large-Scale Energy-Based Models
francis maes
Journal of Machine Learning Volume to appear, Number to appear, 2009.

Abstract

In this paper we introduce Nieme (http://nieme.lip6.fr), a machine learning library for large-scale classification, regression and ranking. Nieme relies on the framework of energy-based models, which unifies several learning algorithms ranging from simple perceptrons to recent models such as the pegasos support vector machine or l1-regularized maximum entropy models. This framework also unifies batch and stochastic learning which are both seen as energy minimization problems. Nieme can hence be used in a wide range of situations, but is particularly interesting for large-scale learning tasks where both the examples and the features are processed incrementally. Being able to deal with new incoming features at any time within the learning process is another original feature of the Nieme toolbox. Nieme is released under the GPL license. It is efficiently implemented in C++, it works on Linux, Mac OS X and Windows and provides interfaces for C++, Java and Python.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:5148
Deposited By:Francis maes
Deposited On:24 March 2009