PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

A self--training method for learning to rank with unlabeled data
Vinh Truong, Massih Amini and Patrick Gallinari
In: European Symposium on Artificial Neural Networks (ESANN 2009), 22-24 Apr 2009, Bruges, Belgium.


This paper presents a new algorithm for bipartite ranking functions trained with partially labeled data. The algorithm is an extension of the self--training paradigm developed under the classification framework. We further propose an efficient and scalable optimization method for training linear models though the approach is general in the sense that it can be applied to any classes of scoring functions. Empirical results on several common image and text corpora over the Area Under the ROC Curve (AUC) and the Average Precision measure show that the use of unlabeled data in the training process leads to improve the performance of baseline supervised ranking functions.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Information Retrieval & Textual Information Access
ID Code:5043
Deposited By:Massih Amini
Deposited On:24 March 2009