PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Kolmogorov complexity theory over the reals
Wouter M. Koolen and Martin Ziegler
Electronic Notes in Theoretical Computer Science Number 221, pp. 153-169, 2008.

Abstract

Kolmogorov Complexity constitutes an integral part of computability theory, information theory, and computational complexity theory—in the discrete setting of bits and Turing machines. Over real numbers, on the other hand, the BSS-machine (aka real-RAM) has been established as a major model of computation. This real realm has turned out to exhibit natural counterparts to many notions and results in classical complexity and recursion theory; although usually with considerably different proofs. The present work investigates similarities and differences between discrete and real Kolmogorov Complexity as introduced by Montaña and Pardo (1998).

EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:4949
Deposited By:Wouter Koolen
Deposited On:24 March 2009