PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Absolute Convergence of Rational Series is semi-decidable
François Denis and Raphael Bailly
In: 3rd International Conference on Language and Automata Theory and Applications (LATA 2009), April 2-8, 2009, Tarragona, Spain.


We study \emph{real-valued absolutely convergent rational series}, i.e. functions $r: \Sigma^* \rightarrow {\mathbb R}$, defined over a free monoid $\Sigma^*$, that can be computed by a multiplicity automaton $A$ and such that $\sum_{w\in \Sigma^*}|r(w)|<\infty$. We prove that any absolutely convergent rational series $r$ can be computed by a multiplicity automaton $A$ which has the property that $r_{|A|}$ is simply convergent, where $r_{|A|}$ is the series computed by the automaton $|A|$ derived from $A$ by taking the absolute values of all its parameters. Then, we prove that the set ${\cal A}^{rat}(\Sigma)$ composed of all absolutely convergent rational series is semi-decidable and we show that the sum $\sum_{w\in \Sigma^*}|r(w)|$ can be estimated to any accuracy rate for any $r\in {\cal A}^{rat}(\Sigma)$. We also introduce a spectral radius-like parameter $\rho_{|r|}$ which satisfies the following property: $r$ is absolutely convergent iff $\rho_{|r|}<1$.

EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:4832
Deposited By:François Denis
Deposited On:24 March 2009