PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

#An #optimal permutation routing algorithm on full-duplex hexagonal networks
Janez Žerovnik and Ignasi Saun Walls
Discrete mathematics and theoretical computer Volume 10, Number 3, pp. 49-62, 2008. ISSN 1365-8050

Abstract

Zahtevnost permutacijskega usmerjanja je standarden test za primernost topologije za komunikacijsko omrežje. V članku je pokazano, da je mogoče na heksagonalnih mrežah vsako permutacijsko usmerjanje opraviti v optimalnem številu komunikacijskih korakov, to je v številu korakov, ki so potrebni za najdaljšo med najkrajšimi potmi, ki so potrebne za prenos informacijskih paketov. Dokaz je konstruktiven, uporabljeni algoritem pa porazdeljen, saj ne potrebuje nobene globalne informacije. Vsako vozlišče potrebuje samo podatek o svoji lokaciji, vsak od paketov pa s seboj nosi naslov cilja. // In the permutation routing problem, each processor is the origin of at most one packet and the destination of no more than one packet. The goal is to minimize the number of time steps required to route all packets to their respective destinations, under the constraint that each link can be crossed simultaneously by no more than one packet. We study this problem in ahexagonal network, i.e. a finite subgraph of a triangular grid, which is awidely used network in practical applications. We present an optimal distributed permutation routing algorithm for full-duplex hexagonal networks, using the addressing scheme described by Nocetti et al. Furthermore, we prove that this algorithm is oblivious and translation invariant.

EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:4613
Deposited By:Igor Pesek
Deposited On:13 March 2009