PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Feature Selection in Taxonomies with Applications to Paleontology.
Gemma Garriga, Antti Ukkonen and Heikki Mannila
In: 11th International Conference Discovery Science(2008).

Abstract

Taxonomies for a set of features occur in many real-world domains. An example is provided by paleontology, where the task is to determine the age of a fossil site on the basis of the taxa that have been found in it. As the fossil record is very noisy and there are lots of gaps in it, the challenge is to consider taxa at a suitable level of aggregation: species, genus, family, etc. For example, some species can be very suitable as features for the age prediction task, while for other parts of the taxonomy it would be better to use genus level or even higher levels of the hierarchy. A default choice is to select a fixed level (typically species or genus); this misses the potential gain of choosing the proper level for sets of species separately. Motivated by this application we study the problem of selecting an antichain from a taxonomy that covers all leaves and helps to predict better a specified target variable. Our experiments on paleontological data show that choosing antichains leads to better predictions than fixing specific levels of the taxonomy beforehand.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Theory & Algorithms
ID Code:4455
Deposited By:Gemma Garriga
Deposited On:13 March 2009