PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Composite Kernel Learning
Marie Szafranski, Yves Grandvalet and Alain Rakotomamonjy
In: ICML 2008, 5-9 July 2008, Helsiniki, Finland.


The Support Vector Machine (SVM) is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning (MKL) enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Brain Computer Interfaces
ID Code:4388
Deposited By:Marie Szafranski
Deposited On:13 March 2009