PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Protein Functional Class Prediction With a Combined Graph
H.H. Shin, K. Tsuda and B. Schölkopf
Expert Systems with Applications Volume 36, Number 2, pp. 3284-3292, 2008.


In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems, graph edges can represent different relationships such as protein–protein interactions, genetic interactions, or co-participation in a protein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein function. However, since different graphs contain partly independent and partly complementary information about the problem at hand, one can enhance the total information extracted by combining all graphs. In this paper, we propose a method for integrating multiple graphs within a framework of semi-supervised learning. The method alternates between minimizing the objective function with respect to network output and with respect to combining weights. We apply the method to the task of protein functional class prediction in yeast. The proposed method performs significantly better than the same algorithm trained on any singl e graph.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Brain Computer Interfaces
Theory & Algorithms
ID Code:4329
Deposited By:Bernhard Schölkopf
Deposited On:13 March 2009