PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

The Gaussian Process Density Sampler
Ryan Adams, Iain Murray and David MacKay
Advances in Neural Information Processing Systems 21 (NIPS 2008) 2009.


We present the Gaussian Process Density Sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a fixed density function that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Markov chain Monte Carlo, which gives samples from the posterior distribution over density functions and from the predictive distribution on data space. We can also infer the hyperparameters of the Gaussian process. We compare this density modeling technique to several existing techniques on a toy problem and a skull-reconstruction task.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:4283
Deposited By:Ryan Adams
Deposited On:06 March 2009