PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Multi-Classification by Categorical Features via Clustering.
Yevgeny Seldin and Naftali Tishby
In: The 25th International Conference on Machine Learning (ICML-2007), 5-8 July 2008, Helsinki, Finland.

Abstract

We derive a generalization bound for multi-classification schemes based on grid clustering in categorical parameter product spaces. Grid clustering partitions the parameter space in the form of a Cartesian product of partitions for each of the parameters. The derived bound provides a means to evaluate clustering solutions in terms of the generalization power of a built-on classifier. For classification based on a single feature the bound serves to find a globally optimal classification rule. Comparison of the generalization power of individual features can then be used for feature ranking. Our experiments show that in this role the bound is much more precise than mutual information or normalized correlation indices.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:4156
Deposited By:Yevgeny Seldin
Deposited On:26 July 2008