PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Une Méthode Contextuelle d'Extension de Requête avec des Groupements de Mots pour le Résumé Automatique
Jean-François Pessiot, Young Min Kim, Massih Amini, Nicolas Usunier and Patrick Gallinari
In: Proceedings of the 5th Conférence en Recherche d'Information et Applications, 12-14 Mar 2008, Trégastel, France.

Abstract

This paper describes the different steps which lead to the construction of the LIP6 extractive summarizer. The basic idea behind this system is to expand question and title keywords of each topic with their respective cluster terms. Term clusters are found by unsupervised learning using a classification variant of the well-known EM algorithm. Each sentence is then characterized by 4 features, each of which uses bag-of-words similarities between expanded topic title or questions and the current sentence. A final score of the sentences is found by manually tuning the weights of a linear combination of these features ; these weights are chosen in order to maximize the Rouge-2 AvF measure on the Duc 2006 corpus.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Information Retrieval & Textual Information Access
ID Code:3836
Deposited By:Massih Amini
Deposited On:25 February 2008