PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Discovering multi-level structures in bio-molecular data through the Bernstein inequality
Alberto Bertoni and Giorgio Valentini
BMC Bioinformatics 2007.

Abstract

Background: The unsupervised discovery of structures (i.e. clusterings) underlying data is a central issue in several branches of bioinformatics. Methods based on the concept of stability have been recently proposed to assess the reliability of a clustering procedure and to estimate the "optimal" number of clusters in bio-molecular data. A major problem with stability-based methods is the detection of multi-level structures (e.g. hierarchical functional classes of genes), and the assessment of their statistical significance. In this context, a chi-square based statistical test of hypothesis has been proposed; however, to assure the correctness of this technique some assumptions about the distribution of the data are needed. Results: To assess the statistical significance and to discover multi-level structures in bio-molecular data, a new method based on Bernstein's inequality is proposed. This approach makes no assumptions about the distribution of the data, thus assuring a reliable application to a large range of bioinformatics problems. Results with synthetic and DNA microarray data show the effectiveness of the proposed method. Conclusions: The Bernstein test, due to its loose assumptions, is more sensitive than the chi-square test to the detection of multiple structures simultaneously present in the data. Nevertheless it is less selective, that is subject to more false positives, but adding independence assumptions, a more selective variant of the Bernstein inequality-based test is also presented. The proposed methods can be applied to discover multiple structures and to assess their significance in different types of bio-molecular data.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:3578
Deposited By:Giorgio Valentini
Deposited On:13 February 2008