PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Large quadratic programs in training Gaussian support vector machines
Thomas Serafini, Gaetano Zanghirati and Luca Zanni
Rendiconti di Matematica e delle sue Applicazioni Volume 23, pp. 257-275, 2003. ISSN 1120-7183

Abstract

We consider the numerical solution of the large convex quadratic program arising in training the learning machines named support vector machines. Since the matrix of the quadratic form is dense and generally large, solution approaches based on explicit storage of this matrix are not practicable. Well known strategies for this quadratic program are based on decomposition techniques that split the problem into a sequence of smaller quadratic programming subproblems. For the solution of these subproblems we present an iterative projection-type method suited for the structure of the constraints and very effective in case of Gaussian support vector machines. We develop an appropriate decomposition technique designed to exploit the high performance of the proposed inner solver on medium or large subproblems. Numerical experiments on large-scale benchmark problems allow to compare this approach with another widely used decomposition technique. Finally, a parallel extension of the proposed strategy is described.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:3368
Deposited By:Gaetano Zanghirati
Deposited On:09 February 2008