PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Hierarchical Penalization
Marie Szafranski, Yves Grandvalet and Pierre Morizet-Mahoudeaux
In: NIPS 2007, 03-08 Dec 2007, Vancouver, Canada.


Hierarchical penalization is a generic framework for incorporating prior information in the fitting of statistical models, when the explicative variables are organized in a hierarchical structure. The penalizer is a convex functional that performs soft selection at the group level, and shrinks variables within each group. This favors solutions with few leading terms in the final combination. The framework, originally derived for taking prior knowledge into account, is shown to be useful in linear regression, when several parameters are used to model the influence of one feature, or in kernel regression, for learning multiple kernels.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Spotlight)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:3253
Deposited By:Marie Szafranski
Deposited On:08 February 2008