PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Transductive Support Vector Machines for Structured Variables
Alexander Zien, Ulf Brefeld and Tobias Scheffer
In: 24th International Conference on Machine Learning (ICML 2007), 20-24 June 2007, Corvallis, OR, USA.

Abstract

We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
ID Code:3094
Deposited By:Alexander Zien
Deposited On:19 December 2007