PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection
Nicole Krämer and Mikio L. Braun
In: International Comference on Machine Learning 2007, 20 - 24 June 2007, Corvallis, Oregon, USA.


Kernelizing partial least squares (PLS), an algorithm which has been particularly popular in chemometrics, leads to kernel PLS which has several interesting properties, including a sub-cubic runtime for learning, and an iterative construction of directions which are relevant for predicting the outputs. We show that the kernelization of PLS introduces interesting properties not found in ordinary PLS, giving novel insights into the workings of kernel PLS and the connections to kernel ridge regression and conjugate gradient descent methods. Furthermore, we show how to correctly define the degrees of freedom for kernel PLS and how to efficiently compute an unbiased estimate. Finally, we address the practical problem of model selection. We demonstrate how to use the degrees of freedom estimate to perform effective model selection, and discuss how to implement cross-validation schemes efficiently.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:3045
Deposited By:Nicole Krämer
Deposited On:16 September 2007