PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Learning to Rank for Collaborative Filtering
Jean-François Pessiot, Vinh Truong, Nicolas Usunier, Massih Amini and Patrick Gallinari
In: 9th International Conference on Enterprise Information Systems, 12-16 June 2007, Madeira, Portugal.


This paper presents the design of a new machine learning based recommendation engine. The aim of this system is to generate real-time personalized recommendations. We present a Collaborative Filtering (CF) approach to this problem which consists to make automatic predictions (filtering) about the interests of a user by collecting taste information from many other users (collaborating). Though the principle is simple, the major diffito come out with a really efficient algorithm capable to handle huge volume in a real time basis is very complex. As a result, collaborative approaches involve two major constraints.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Information Retrieval & Textual Information Access
ID Code:2971
Deposited By:Massih Amini
Deposited On:23 March 2007