PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Single-Channel Speech Separation using Sparse Non-Negative Matrix Factorization
Mikkel Schmidt and Rasmus Olsson
In: Interspeech 2006, Pittsburgh, PA, USA(2006).


We apply machine learning techniques to the problem of separating multiple speech sources from a single microphone recording. The method of choice is a sparse non-negative matrix factorization algorithm, which in an unsupervised manner can learn sparse representations of the data. This is applied to the learning of personalized dictionaries from a speech corpus, which in turn are used to separate the audio stream into its components. We show that computational savings can be achieved by segmenting the training data on a phoneme level. To split the data, a conventional speech recognizer is used. The performance of the unsupervised and supervised adaptation schemes result in significant improvements in terms of the target-to-masker ratio.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
ID Code:2722
Deposited By:Mikkel Schmidt
Deposited On:22 November 2006