PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

A Selective Sampling Strategy for Label Ranking
Massih Amini, Nicolas Usunier, François Laviolette, Alexandre Lacasse and Patrick Gallinari
In: ECML 2006, 17-22 Sep 2006, Berlin, Germany.


We propose a novel active learning strategy based on the compression framework for label ranking functions which, given an input instance, predict a total order over a predefined set of alternatives. Our approach is theoretically motived by an extension to ranking and active learning of Kääriänen's generalisation bounds using unlabeled data, initially developed in the context of classification. The bounds we obtain suggest a selective sampling strategy provided that a sufficiently, yet reasonably large initial labeled dataset is provided. Experiments on Information Retrieval corpora from automatic text summarization and question/answering show that the proposed approach allows to substantially reduce the labeling effort in comparison to random and heuristic-based sampling strategies.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:2639
Deposited By:Massih Amini
Deposited On:22 November 2006