PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Increasing Information Transfer Rates for Brain-Computer Interfacing
Guido Dornhege
(2006) PhD thesis, Fraunhofer FIRST.

Abstract

The goal of a Brain-Computer Interface (BCI) consists of the development of a unidirectional interface between a human and a computer to allow control of a device only via brain signals. While the BCI systems of almost all other groups require the user to be trained over several weeks or even months, the group of Prof. Dr. Klaus-Robert Müller in Berlin and Potsdam, which I belong to, was one of the first research groups in this field which used machine learning techniques on a large scale. The adaptivity of the processing system to the individual brain patterns of the subject confers huge advantages for the user. Thus BCI research is considered a hot topic in machine learning and computer science. It requires interdisciplinary cooperation between disparate elds such as neuroscience, since only by combining machine learning and signal processing techniques based on neurophysiological knowledge will the largest progress be made. In this work I particularly deal with my part of this project, which lies mainly in the area of computer science. I have considered the following three main points: Establishing a performance measure based on information theory: I have critically illuminated the assumptions of Shannon's information transfer rate for application in a BCI context. By establishing suitable coding strategies I was able to show that this theoretical measure approximates quite well to what is practically achieveable. Transfer and development of suitable signal processing and machine learning techniques: One substantial component of my work was to develop several machine learning and signal processing algorithms to improve the efficiency of a BCI. Based on the neurophysiological knowledge that several independent EEG features can be observed for some mental states, I have developed a method for combining different and maybe independent features which improved performance. In some cases the performance of the combination algorithm outperforms the best single performance by more than 50 %. Furthermore, I have theoretically and practically addressed via the development of suitable algorithms the question of the optimal number of classes which should be used for a BCI. It transpired that with BCI performances reported so far, three or four different mental states are optimal. For another extension I have combined ideas from signal processing with those of machine learning since a high gain can be achieved if the temporal filtering, i.e., the choice of frequency bands, is automatically adapted to each subject individually. Implementation of the Berlin brain computer interface and realization of suitable experiments: Finally a further substantial component of my work was to realize an online BCI system which includes the developed methods, but is also flexible enough to allow the simple realization of new algorithms and ideas. So far, bitrates of up to 40 bits per minute have been achieved with this system by absolutely untrained users which, compared to results of other groups, is highly successful.

EPrint Type:Thesis (PhD)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Brain Computer Interfaces
ID Code:2277
Deposited By:Guido Dornhege
Deposited On:21 October 2006