PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach
Stijn Meganck, Philippe Leray and Bernard Manderick
In: MDAI 2006, 3-5 Apr 2006, Tarragona.

Abstract

We discuss a decision theoretic approach to learn causal Bayesian networks from observational data and experiments. We use the information of observational data to learn a completed partially directed acyclic graph using a structure learning technique and try to discover the directions of the remaining edges by means of experiment. We will show that our approach allows to learn a causal Bayesian network optimally with relation to a number of decision criteria. Our method allows the possibility to assign costs to each experiment and each measurement. We introduce an algorithm that allows to actively add results of experiments so that arcs can be directed during learning. A numerical example is given as demonstration of the techniques.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Paper)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
ID Code:2108
Deposited By:Stijn Meganck
Deposited On:18 May 2006