PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Local Features and Kernels For Classifcation of Texture and Object Categories: An In-Depth Study
Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik and Cordelia Schmid
(2005) Technical Report. INRIA Rhone-Alpes, France.

Abstract

Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classiffier with kernels based on two effective measures for comparing distributions, the Earth Mover's Distance and the chi-square distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels and classiffiers. We then conduct a comparative evaluation with several state-of-the-art recognition methods on four texture and five object databases. On most of these databases, our implementation exceeds the best reported results and achieves comparable performance on the rest. Finally, we investigate the influence of background correlations on recognition performance via extensive tests on the PASCAL database, for which ground-truth object localization information is available. Our experiments demonstrate that image representations based on distributions of local features are surprisingly effective for classiffication of texture and object images under challenging real-world conditions, including significant intra-class variations and substantial background clutter.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Monograph (Technical Report)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Machine Vision
ID Code:1531
Deposited By:Marcin Marszalek
Deposited On:28 November 2005