PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Level of Repair Analysis and Minimum Cost Homomorphisms of Graphs
Gregory Gutin, Arash Rafiey-Hafshejani, Anders Yeo and Michael Tso
Discrete Applied Mathematics Volume to appear, 2005.

Abstract

Level of Repair Analysis (LORA) is a prescribed procedure for defence logistics support planning. For a complex engineering system containing perhaps thousands of assemblies, sub-assemblies, components, etc. organized into several levels of indenture and with a number of possible repair decisions, LORA seeks to determine an optimal provision of repair and maintenance facilities to minimize overall life-cycle costs. For a LORA problem with two levels of indenture with three possible repair decisions, which is of interest in UK and US military and which we call LORA-BR, Barros (1998) and Barros and Riley (2001) developed certain branch-and-bound heuristics. The surprising result of this paper is that LORA-BR is, in fact, polynomial-time solvable. To obtain this result, we formulate the general LORA problem as an optimization homomorphism problem on bipartite graphs, and reduce a generalization of LORA-BR, LORA-M, to the maximum weight independent set problem on a bipartite graph. We prove that the general LORA problem is NP-hard by using an important result on list homomorphisms of graphs. We introduce the minimum cost graph homomorphism problem, provide partial results and pose an open problem. Finally, we show that our result for LORA-BR can be applied to prove that an extension of the maximum weight independent set problem on bipartite graphs is polynomial time solvable.

PDF - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Learning/Statistics & Optimisation
Theory & Algorithms
ID Code:429
Deposited By:Gregory Gutin
Deposited On:22 December 2004