PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Some Properties of Regularized Kernel Methods
ernesto de vito, lorenzo rosasco, andrea caponnetto, michele piana and alessandro verri
journal of machine learning research Volume 5, pp. 1363-1390, 2004.


In regularized kernel methods, the solution of a learning problem is found by minimizing functionals consisting of the sum of a data and a complexity term. In this paper we investigate some properties of a more general form of the above functionals in which the data term corresponds to the expected risk. First, we prove a quantitative version of the representer theorem holding for both regression and classification, for both differentiable and non differentiable loss functions, and for arbitrary offset terms. Second, we show that the case in which the offset space is non trivial corresponds to solving a standard problem of regularization in a Reproducing Kernel Hilbert Space in which the penalty term is given by a seminorm. Finally, we discuss the issues of existence and uniqueness of the solution. From the specialization of our analysis to the discrete setting it is immediate to establish a connection between the solution properties of sparsity and coefficient boundedness and some properties of the loss function. For the case of Support Vector Machines for classification, we also obtain a complete characterization of the whole method in terms of the Khun-Tucker conditions with no need to introduce the dual formulation.

PDF (pdf file) - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Article
Project Keyword:Project Keyword UNSPECIFIED
Subjects:Computational, Information-Theoretic Learning with Statistics
Theory & Algorithms
ID Code:397
Deposited By:Lorenzo Rosasco
Deposited On:19 December 2004