PASCAL - Pattern Analysis, Statistical Modelling and Computational Learning

Signal Extraction for Brain-Computer Interface
David Hardoon and John Shawe-Taylor
In: Machine Learning Meets the User Interface, 12 December 2003, Whistler, Canada.


We use Kernel Canonical Correlation Analysis (KCCA) for detecting brain activity in function MRI by learning a semantic representation of fMRI brain scans and their associated time frequency. The semantic space provides a common representation and enables a comparison between the fMRI and time frequency. We compare the approach against Canonical Correlation Analysis (CCA) by localising brain regions that control finger movement and regions that are involved in mental calculation. We also compare the two approaches on a simulated null data set. We hypothesis that once a link can be established between regions of the brain to task one could create a brain-computer interface were computer related tasks could be activated by brain "thought" activity.

PDF (Abstract) - Requires Adobe Acrobat Reader or other PDF viewer.
PDF (Slides) - Requires Adobe Acrobat Reader or other PDF viewer.
EPrint Type:Conference or Workshop Item (Spotlight)
Project Keyword:Project Keyword UNSPECIFIED
Subjects:User Modelling for Computer Human Interaction
ID Code:80
Deposited By:Steve Gunn
Deposited On:12 May 2004